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Abstract—The conditional probability (fraction) of the successful decoding of erasure patterns of high (greater
than the code distance) weights is investigated for linear codes with the partially known or unknown weight
spectra of code words. The estimated conditional probabilities and the methods used to calculate them refer
to arbitrary binary linear codes and binary Hamming, Panchenko, and Bose–Chaudhuri–Hocquenghem
(BCH) codes, including their extended and shortened forms. Error detection probabilities are estimated
under erasure-correction conditions. The product-code decoding algorithms involving the correction of high
weight erasures by means of component Hamming, Panchenko, and BCH codes are proposed, and the upper
estimate of decoding failure probability is presented.
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1. INTRODUCTION
The problem concerning erasure corrections in the

erasure channel has been investigated for a long time.
The throughput for the channel with independent
errors and erasure is known. The exponential bounds
of the error probability are known for codding–decod-
ing schemes involving erasures, lists of variable length,
and feedback [1]. The algorithms and bounds on gen-
eralized distance decoding and many other results are
known. The list of publications is huge! However, for
binary linear codes, many problems are still unre-
solved, e.g., the fraction of correctable erasure combina-
tions with weights greater than or equal to the code dis-
tance for arbitrary and particular classes of codes and the
decoder failure probability during correction of only era-
sures or errors and erasures. At present, the correcting
ability of low-density parity-check (LDPC) codes in
the erasure channel is being actively studied. For
example, in [2] has been investigated the erasure cor-
rection by concatenation of LDPC codes with the
Hamming code. In this case, for binary Hamming
codes, the exact estimates of the fraction of correctable
erasures with large weights are derived and employed. It
is worthy to note [3], where the fraction of erasures cor-
rected by nonbinary codes was discussed. The results
concerning investigations of minimal codewords in
linear codes [4] can be useful for estimates of the frac-
tion of correctable erasure patterns.

The estimate of the fraction of correctable erasures
with large weights is necessary to optimize decoding in
the channel with erasures and errors and the decoding

of product or concatenated codes. It is interesting to
consider decreasing of decoder fault and error proba-
bility with extension of the decoding area.

The issues concerning the complexity of correction
of erasures of large weights have been intensely inves-
tigated in 1963–1980 under the condition of the low
capacity of computation devices. For example, the
author of [5, 6], examined the algorithms and schemes
of correction of erasures of large weights and error
detection for linear and certain cyclic codes. Nowa-
days, the complexity is not critical but remains an
important problem.

The theoretical part of the work related to the cor-
rections of erasures of large weights contains the exact
or lower estimates of the fractions of correctable era-
sure combinations of specified weights (from the code
distance to the number of code checks) for arbitrary and
particular block codes with the known weight spectrum
and partially known and completely unknown code-
word weight spectrum. In a number of cases, these esti-
mates are accurate. It was proved that the fraction of
correctable configurations does not decrease upon
code shortening and, in principle, can grow. In addi-
tion, it was demonstrated that the fraction of correct-
able configurations remains unchangeable with code
extension under the certain (often fulfilled) condi-
tions. In particular, this refers to nonshortened Ham-
ming codes with d = 3 and Bose–Chaudhuri–Hoc-
quenghem (BCH) codes with d = 5. As the objects for
future investigations there was chosen Hamming and
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Panchenko codes with code distance 4 and BCH code
with distance 6.

In the applied aspects, this work continues work [7]
in the direction of increasing the reliability of long-
term memory devices (e.g., solid-state disks (SSDs))
or their modifications. In the memory devices of the
given type, channel (memory cells) degradation looks
like an error accumulation. However, the error-accu-
mulation rate is relative small, and each recording
cycle again and again initiates the error-accumulation
process. With the aim of optimizing the reading and
recording of swap files, data exchange between ran-
dom-access and long-term memories occurs by blocks
of sufficiently large size (tens or even hundreds or thou-
sands of standard words). The natural compromise
between the complexity and the reliability is the usage
of the concatenated coding structure, preserves encod-
ing for standard words and  incorporates them with
outer encoding. As such a compromised structure, the
product of component code was studied in [7].

In the case of the product of binary codes, an
unsolved problem is, e.g., the best decoding with par-
tial correction of dependent error configurations in
“neighboring” (in some structural sense) words. Such
error “spots” often arise when memory microcircuits
are externally irradiated or the temperature conditions
are critical. Correction of erasures of large weight
make it possible to extend the decoding area of the
products of Hamming, Panchenko, and BCH codes
whose code distances are 4 and 6. As a result, the size
of almost all correctable error spots can be greater than
4 × 4 and 6 × 6.

In this work, the fraction of correctable error con-
figurations of large weights is estimated for component
codes and the probabilities of correct and faulty
decoding are determined for product codes. Strictly
speaking, estimation is performed under the assump-
tion of independence of errors and erasures due to the
absence of adequate model (to the application area) of
dependent events. Actually, this is not a substantial
“minus” of the given work because all correctable era-
sure combinations are located in the certain
(restricted) amount of rows and columns. Therefore,
any spot configuration is their subset. For “extended”
decoding of the product of Panchenko and BCH
codes with correction of erasure patterns of a large
weight, the failure probability estimate indicates a rad-
ical decrease in fault probability in comparison with
usual (“nonextended”) decoding of the product code
even if the extension of the decoding area is only unity.

As a matter of fact, the concept of error spot (or a
2D error burst) has appeared long ago. This concept is
related to the theory of Markov processes occurring in
the communications channels. In applied problems,
the given concept is connected with decoding for hard
disks, tape and diskette information carriers, and opti-
cal discs (compact disks and digital video disks) [8]. In

the decoding range of SSDs, an attainable resource is
strictly restricted first of all by the allowable delay. For
this reason Hamming and Panchenko codes with dis-
tance 4 and BCH codes with distance 6 were chosen as
the objects under study.

Let the [n, n – r, d] code be the binary linear code
with length n, redundancy r, minimum distance d. A
parity check matrix of a code will be called, for short,
by “check matrix”. The quantities coupled with this
code can be designated as follows: n is the code length,
r is the number of check symbols, d is the minimum
code distance, Aw is the number of codewords of
weight w, ρ is the weight of erasures whose correction
is analyzed (only the case of ρ ≤ r is considered), Sρ is
the number of erasure configurations with weight ρ
correctable by the code (or, equivalently, the amount
of different sets of ρ linearly independent columns of
the check matrix of the code or the number of different
r × ρ submatrices of the full rank in the check matrix),
and δρ is the fraction of erasures of weight ρ correct-
able by the code:

(1.1)

Obviously, for any [n, n – r, d] code, we have

(1.2)

In the case of the binary nonshortened [2r – 1, 2r –
1 – r, 3] Hamming code, the following system of nota-
tion is used:

(i)  is the number of correctable erasure config-
urations with weight ρ;

(ii)  is the fraction of correctable erasures with

weight ρ, where  =  ≤ 1 in compliance

with (1.1).
For the binary nonshortened extended [2r ‒ 1, 2r – 1 – r, 4]

Hamming code obtained from the [2r – 1 – 1, 2r – 1 – r, 3]
code by supplement of overall parity check symbol,
the following system of notation is employed:

(i)  is the number of correctable erasure config-
urations with weight ρ.

(ii)  is the fraction of correctable erasures with

weight ρ, where  =  ≤ 1 in compliance with (1.1).
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sets containing ρ linearly independent columns of the
check matrix of the code with the known weight spec-
trum. The corresponding asymptotic estimates are
derived. The recursive approach to the estimation of
quantity δρ is proposed. Section 3 provides the recur-
rent estimates of Sρ and δρ for arbitrary codes and
codes with even weights. The dependence between
weight and recurrent approaches and their joint appli-
cation are demonstrated. For the Hamming code with
d = 3 and its extension, the exact values of , ,

, and  are obtained. The relationships between
Sρ and δρ derived with the help of shortened and non-
shortened codes and punctured and extended ones are
investigated in Section 4. The formulas for determin-
ing Sρ and δρ of Hamming, Panchenko, and BCH
codes, which are based on the results of previous cal-
culations, are deduced in Section 5, where the corre-
sponding graphs and tables are presented as well. Era-
sure corrections with error detection are discussed in
Section 6. The product-code decoding algorithms
relied on the correction of erasures with large weights
are proposed in Sections 7 and 8, which also contain
formulas for calculating the successful decoding prob-
abilities. Several examples are presented all over the
paper text.

2. FRACTION OF ERASURES 
CORRECTABLE BY LINEAR CODES 

WITH KNOWN SPECTRAL WEIGHTS

2.1. Number of Sets of Linearly Independent Columns 
of the Check Matrix for a Code 

with the Known Weight Spectrum

The necessary condition of the correction of era-
sure patterns of large weight ρ is the full rank of the
submatrix composed of the columns of check matrix
of the code, which correspond to the erased positions.
In this section, the number and fraction of the such
submatrices are estimated.

Below, for the [n, n – r, d] code with weight spec-
trum A0, A1, …, An, we introduce the function

(2.1)

the value of which is the lower estimate of the number
Sρ of erasure configurations with weights ρ correctable
by the code under consideration. (In a number of
cases, this estimate is accurate.) To emphasize that
function Ψ(n, d, ρ) is calculated for certain [n, n – r, d]
code C, this quantity is written as Ψ(n, d, ρ, C).

Theorem 2.1. The fraction δρ of erasures with weights
ρ correctable by an [n, n – r, d] code and the number Sρ
of different sets of ρ linearly independent columns of the
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estimates:

(2.2)

In particular, the equality

(2.3)

holds under the fulfillment of the condition

(2.4)

Proof. Quantity Sρ is the difference between the

total number of sets of ρ columns of check matrix 

and the number of configurations of ρ linearly depen-
dent columns. Any configuration of ρ linearly depen-
dent columns of the check matrix can be obtained if
ρ – w columns are added to the set from w columns
with the zero sum corresponding to the codeword with
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ρ – w columns is . The foregoing explains the

structure of expression (2.1). In principle, the r × ρ
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zero sum. This leads to the fact that, in expression (2.1),
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onefold. Hence, (2.2) comprises the sign “≥”. Under
condition (2.4), all linearly dependent configurations
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onefold. From this follows equality (2.3). The theorem
is proved.
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bounds corresponding to min{Ad(n, r)} and codes
achieving this bounds can be found in [9–13].

Many authors (see, e.g., [7, 9–21] and references
therein) have been studied (and continue to study) the
weight spectra of codes and their asymptotics.

The estimates of Theorem 2.1 can be improved
with the help of the following lemma.

Lemma 2.1. Any set of ρ linearly dependent columns
of the check matrix is the combination of the set from w
columns with the zero sum corresponding to a codeword
of weight w and the set from ρ – w linearly independent
columns, where d ≤ w ≤ ρ.

Using function (2.1) in a recursive manner, let us
construct the “inclusion–exclusion” recursive scheme,
which, in principle, can improve estimate (2.2):

where Aw(n) is the number of words with weight w in
the code of length n. For one and two steps of recur-
rence, the estimates of the fraction of erasures are
expressed, respectively, as

2.2. Asymptotic Estimation of the Fraction 
of Correctable Erasures

The following observation can motivate the inclu-
sion of erasures with large weights into the decoding
process. Using the know binomial approximation of
the weight spectrum of the [15, 17, 18, 20] linear code
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number allowing for (in principle) the correction term
in the aforementioned approximations and weight
restriction w ≥ d), we can obtain the following approx-
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imate estimate of the behavior of function Sρ in the
interval d ≤ ρ < r:

Thus (see [18, Lemma 10.8]), we obtain the estimate
of the fraction of correctable erasures with large
weights:

where H(d/ρ) is the binary entropy. The reference

point is Sd ×  ≈ 1.

It is seen from the proposed estimate that the frac-
tion of correctable erasures with large weights dimin-
ishes exponentially with increasing weight at the fixed
number of checks. For this reason, it can be assumed
that the weight interval of the combinations of erasures
is sufficiently (softly) restricted by the value on the
order of 2d (or the lesser value).
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from ρ – 1 linearly independent columns. Here, b = 1,
2, …, Sρ–1 is the set number. The added column is
chosen from the n – (ρ – 1) columns of the matrix not
included in the set . This explains term n – ρ + 1
in formula (3.3).

Let ρ – 1 ≥ d – 1 and 2 ≤ j ≤ ρ – 1. It is assumed
that  is the subset from the j columns of the set

, where u = 1, 2, …,  is the subset number.

Any subset  is linearly independent, and the sum

 of all subset columns is not equal to zero.

Hence, for all subsets , the added column cannot

be equal to . Otherwise, we obtain the linearly
dependent set of ρ columns. If 2 ≤ j ≤ d – 2, the check

matrix cannot comprise the column equal to :
this would lead to the fact that the j + 1 columns with the
zero sum would exist in the matrix, where j + 1 ≤ d – 1.
Hence, the situations with d – 1 ≤ j ≤ ρ – 1 are considered

below. In formula (3.3), the term   esti-

mates from above the number of columns that cannot
be added to set . It can be demonstrated that at

fixed b and arbitrary u and j, all sums  are dif-

ferent. Otherwise,  could not be linearly indepen-
dent. On the other hand, it is possible that the column

equal to  is not involved in the check matrix.

Hence, the term  is the upper esti-

mate, explaining the sign “≥” in (3.3).
In the aforementioned construction, each set Γρ

will be repeated ρ-fold. Hence, divisor ρ appears
in (3.3). Thus, the number Sρ of different sets Γρ can
be estimated from the formula
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It is readily seen that

which leads to (3.1).
The check matrix of the [2r –1, 2r – 1 – r, 3] Ham-

ming code incorporates all nonzero columns of size r.
Hence, inequalities are replaced by equality in (3.3)
and, accordingly, from which we obtain (3.2). The
lemma is proved.
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the value of which is the lower estimate of the number
of erasure configurations of weight ρ correctable by the
code under consideration. (For the Hamming code
with d = 3, this estimate is accurate.)

Theorem 3.1. The number Sρ of different sets of ρ
linearly independent columns of the check matrix of an
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(3.5)
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code, the following equality holds [2, 3, 4]:
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tively using (3.1), we obtain (3.5). In the case of the
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Lemma 3.2. The number Sρ of different sets of ρ lin-
early independent columns of the check matrix of an
[n, n – r, d] code is recurrently estimated as follows:

(3.8)

In particular, for the [2r – 1, 2r – 1 – r, 4] Hamming code,
the following equality is valid:

(3.9)

Proof. The proof is analogous to the proof of
Lemma 3.1. In a check matrix of the code with even
weights, the sum of the even number of columns cannot
be equal to any check-matrix column. Estimate (3.3)
takes the form

It is easily seen that

from which relation (3.8) immediately follows.
The extended Hamming code check matrix con-

tains all possible columns of size r with unity in the
upper position. The lemma is proved.

Below, for the [n, n – r, d] code with even weights,
we employ the function

(3.10)

the value of which is the lower estimate of the amount
of erasure configurations with weight ρ correctable by
the code under consideration. (For the Hamming
code with d = 4, this estimate is accurate.)

Theorem 3.2. The number Sρ of different sets of ρ lin-
early independent columns of the check matrix of an
[n, n – r, d] code is estimated as follows:

(3.11)

In particular, for the [2r – 1, 2r – 1 – r, 4] extended Ham-
ming code, the following equality holds [4]:

(3.12)

Proof. Assuming that ρ = d – 1 in (1.2) and itera-
tively using (3.8), we obtain (3.11). In the case of the
Hamming code, (3.9) is iteratively employed.
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Remark 4. Relationship (3.12) was first derived in
[4, Theorem 2.8, proof].

Corollaries 3.1 and 3.2 follow from Theorems 2.1,
3.1, and 3.2.

Corollary 3.1. For d ≤ ρ ≤ r, the fraction δρ of era-
sures with weight ρ correctable by an [n, n – r, d] code is
estimated as follows:

(3.13)

(3.14)

In particular, for the [2r – 1, 2r – 1 – r, 3] and [2r – 1,
2r ‒ 1 – r, 4] Hamming codes, respectively, the following
equalities are valid:

(3.15)

(3.16)

It is seen from (3.13) and (3.14), at the fixed n, the
fraction δρ diminishes with growing ρ. In addition, it
follows from (3.15) and (3.16), at the fixed r, the frac-
tions  and  reduces with increasing ρ.

Corollary 3.2. For ρ ≤ r and ρ – d > , the num-

ber Sρ of different sets of ρ linearly independent columns
of the check matrix of an [n, n – r, d] code that is not
nonshortened Hamming code is estimated as follows:

(3.17)

From Theorem 2.1 and the proof of Theorems 3.1
and 3.2, it follows that, as a rule, the maximum in for-
mula (3.17) is equal to Ψ(n, d, ρ) because the check
matrix of the code incorporates not all possible columns.
Moreover, when the inequality

takes place, the inequalities Φ(n, d, ρ) ≤ 0 and 
(n, d, ρ) ≤ 0 are valid.
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On the other hand, the weight spectrum is not
always known. Only data on relatively small weights
are often available. In this case, it is reasonable to cal-
culate function Ψ(n, d, ρ) if possible. Afterward, the
last calculated value of function Ψ(n, d, ρ) is used to
start the recurrent process based on Lemmas 3.1 and
3.2. The given approach was employed in Corollary
3.3, Statement 2, and Examples 2, 5, and 6.

Corollary 3.3. For d ≤ ρ0 < ρ ≤ r, the number Sρ of
different sets of ρ linearly independent columns of the
check matrix of an [n, n – r, d] code that is not nonshort-
ened Hamming code is estimated as follows.

(i) For arbitrary [n, n – r, d] code, we obtain

(3.18)

(ii) When all weights of the [n, n – r, d] code are even,
we have

(3.19)

Remark 5. In [3], erasure correction by the q-ary
cyclic [n, n – r, d]q code was examined, and the lower
estimate of the fraction of correctable erasures, which
is based on relationship (3.7), is presented. For binary
codes with the distance d > 3, this estimate is worse
than the estimates obtained in this paper.

4. FRACTION OF ERASURES 
CORRECTABLE BY SHORTENED, 

EXTENDED, AND PUNCTURED CODES

In this section, it is shown that the fraction of cor-
rectable erasure configurations does not diminish and,
in principle, can grow if codes are shortened. In addi-
tion, it is demonstrated that, under definite (often ful-
filled) conditions, the fraction of correctable configu-
rations remains unchanged if the code is extended. In
particular, this is applicable to nonshortened Ham-
ming codes with d = 3 and BCH codes with d = 5.

4.1. Fraction of Erasures Correctable 
by Shortened Codes

Theorem 4.1. Let ρ ≤ r and the check matrix of a
binary linear [n0, n0 – r, d] code  of length n0 contain
Sρ(n0) sets of ρ linearly independent columns. Then,
there is a shortened [n, n – r, d] code Cn of length n < n0
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0nC

with the check matrix incorporating Sρ(n) sets of ρ lin-
early independent columns, where

(4.1)

Proof. Let us perform shortening by excluding the
columns from the check matrix  of code . As a
result, we obtain the check matrix Hn of code Cn. Each
set of ρ linearly independent columns of nonshortened

check matrix  remains invariable in  short-

ened matrices Hn. Therefore, in all shortened codes
Cn, the sum of the sets of ρ linearly independent col-

umns of the check matrix is Sρ(n0) . The total

number of shortened codes is . Performing aver-

aging over all shortened codes, we obtain Sρ(n) ≥

Sρ(n0) . The final form of relationship (4.1) is

derived by means of simple transformations. The the-
orem is proved.

Corollary 4.1. Let ρ ≤ r and the fraction of correct-
able erasures with weight ρ be δρ(n0) for the check matrix
of a binary [n0, n0 – r, d] code  with length n0. Then,
there is a shortened [n, n – r, d] code Cn of length n < n0
with the check matrix ensuring the fraction δρ(n) of cor-
rectable erasures with weight ρ, which is defined as

(4.2)

Proof. It follows from (4.1) that

Example 3 illustrating theorem 4.1 and corollary
4.1 is presented in Section 5.2.

Below, for t – (ν, k, λ) designes, the system of nota-
tion and definitions correspond to [18, Chapter 2].

Theorem 4.2. Let d ≤ ρ ≤ r and words of arbitrary
weight w in an [n0, n0 – r, d] code  of length n0 gener-
ate an 1 – (n0, w, λ) design. It is assumed that the check
matrix of an [n, n – r, d] code Cn with the length n = n0 – 1
was obtained by deleting one column from the check
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matrix of the code . Then, for all ρ, the following
equality is valid:

(4.3)

where the left- and right-hand sides of the equality were
derived for the codes  and Cn, respectively.

In particular, if ρ – d ≤ , the fraction of correctable

erasures with weight ρ is identical for codes  and Cn.
Proof. The number of blocks of 1 – (n0, w, λ) design

is equal to the number Aw( ) of words with weight w
in code . Parameter λ is equal to the number of
words with weight w coupled with each column of the
check matrix of code . When some of the columns
is removed, these words “are broken down” and only
Aw( ) = Aw( ) – λ words of weight w are preserved
in code Cn. In accordance with [18, Chapter 2, Corol-
lary 10], we obtain λ = wAw( )/n0. Therefore,
Aw(Cn) = Aw( )(n0 – w)/n0, and relationship (4.3)
can be deduced from (2.1) by means of simple trans-
formations. The final statement of the theorem follows
from (2.3) and (4.3).

We note that words with any weight w generate
t ‒ (n0, w, λ) designs with t ≥ 1, in the Hamming,
Panchenko, and BCH codes discussed below.

4.2. Fraction of Erasures Correctable by Extended 
and Punctured Codes

Statement 1. Let the check matrix H0 of a binary
[n, n – r, 2t + 1] code C0 with odd code distance contain
Sρ(H0) sets from ρ (1 ≤ ρ ≤ r) linearly independent col-
umns. It is assumed that an [n + 1, n – r, 2t + 2] code C
is constructed from the code C0 by supplement of overall
parity check symbol. Then, the check matrix H of the
code C incorporates Sρ(H) sets from ρ linearly indepen-
dent columns. In this case,

(4.4)
Proof. The check matrix H of code C can be

obtained if the check matrix H0 of code C0 is supple-
mented by the upper row composed of unities and col-
umn (10…0)T. All Sρ(H0) sets involving ρ linearly inde-
pendent columns of matrix H0 are also linearly inde-
pendent in matrix H. Introduction of column (10…0)T

into each of the Sρ – 1(H0) sets from ρ – 1 linearly inde-
pendent columns, provides the set from ρ linearly
independent columns of matrix H. The sign “≥”
in (4.4) is explained by the fact that the r × ρ subma-
trices of rank ρ – 1, the rank of which is increased to ρ
upon adding the upper row composed of unities to
them, can exist in matrix H0. The statement is proved.
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We note that r × ρ submatrices of rank ρ – 1 men-
tioned in the proof of Statement 1 exists, leading to the
sign “>” in (4.4)

Let  and Aw designate the number of words in
codes C0 and C of Statement 1, respectively. As is
known,

(4.5)

Equality (4.5) and inequality (4.4) emphasize distinc-
tions in approaches and estimates related to the weight
spectrum and the amount of the sets from linearly
independent columns.

In addition, it should be noted that code punctur-
ing is the process inverse to its extension.

Definition. ([18, Section 8.5]). A code C possesses
property P if the removal of the fixed coordinate from
each codeword of the code C provides the punctured
code C* with the same weight spectrum that is inde-
pendent of the punctured coordinate.

Lemma 4.1. ([18, Section 8.5, Theorem 8.14]). Let
an [n, n – r, 2t + 2] code C, all code words of which have
an even weight, possess property P. Then, the code C*
obtained via puncturing of a certain coordinate of the
code C is an [n – 1, n – r, 2t + 1] code. In this case, it
holds that

(4.6)

where Aw and  are the number of words with weight w
in the codes C and C*, respectively.

We note that the equality A2j =  +  resem-
bling the relationship (4.5) follows from (4.6). At the
same time, the authors of [18] indicated that the code
extended by the parity check does not always possesses
property P and provided the following sufficient con-
dition ([18, Section 8.5, Corollary 15]): the code
invariant with respect to the transitive group of substitu-
tions possesses property P. Many extended codes have
transitive groups of substitutions [18]. In particular
(see, e.g., [17]), the nonshortened extended BCH
code is twice transitive.

Theorem 4.3. Let an [n, n – r, 2t + 2] code C whose
code words have an even weight possess property P and
the [n – 1, n – r, 2t + 1] code C* is constructed via punc-
turing of the some coordinate of code C. Then, for ρ =
2t + 2, 2t + 3, 2t + 4, and 2t + 5, it is valid that

(4.7)

where the left- and right-hand sides of the equality were
obtained for the codes C and C*, respectively. In partic-
ular, when ρ ∈ {2t + 2, 2t + 3, 2t + 4, 2t + 5}, we have
δρ(C) = δρ ‒ 1(C*), where δρ(C) and δρ − 1(C*) are the
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fractions of erasures with weights ρ and ρ – 1 correctable
by C and C* codes, respectively, under the condition that

ρ – (2t + 2) ≤ .

Proof. We employ relationship (4.6), substitute the
corresponding weights into (2.1) with allowance for
A2t + 3 = A2t + 5 = 0 for code C, and perform simple
transformations.

It can be assumed that relationship (4.7) and the
equality δρ(C) = δρ − 1(C*) in Theorem 4.3, which is a
consequence of the former, hold for all admissible val-
ues of ρ.

5. FRACTION OF ERASURES CORRECTABLE 
BY NONSHORTENED HAMMING, 
PANCHENKO, AND BCH CODES

5.1. Nonshortened [2r – 1, 2r – 1 – r, 3] 
and [2r –1, 2r – 1 – r, 4] Hamming Codes

Example 1. For the nonshortened extended [2r – 1,
2r – 1 – r, 4] Hamming code, the dependences between
the fraction  of correctable erasures with weight ρ
and r (see (3.17)), which were calculated at 4 ≤ ρ ≤ 8,
ρ ≤ r, and 7 ≤ r ≤ 18, are depicted in Fig. 1. We remind
that  = . Therefore, the presented curves are
the graphs of the fraction  of correctable era-
sures with weight ρ –1 as a function of r – 1 in the
nonshortened [2r–1 – 1, 2r–1 – r, 3] Hamming code.

The numerical values of  are presented in Table 1.

+2 1
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5.2. Nonshortened [5 × 2r – 4, 5 × 2r – 4 – r, 4] 
Panchenko Code with the Distance d = 4

Below, we consider the binary [5 × 2r – 4, 5 × 2r – 4 – r,
4] Panchenko code suggested by V.I. Panchenko in
[13]. This code was analyzed in [7, 12]. For the given
code, let us introduce the following system of nota-
tion:  is the number of words with weight w,  is
the number of the correctable erasure configurations

Π
,w rA Π

ρ,rS

Fig. 1. Variations in the fraction  of correctable era-
sures with weight ρ vs. r for the nonshortened [2r – 1, 2r ‒ 1 – r,
4] Hamming code (or, equivalently, variations in the fraction

 of correctable erasures with weight ρ – 1 vs. r – 1 for
the nonshortened [2r–1 – 1, 2r–1 – r, 3] Hamming code) under
the condition that 4 ≤ ρ ≤ 8, ρ ≤ r, and 7 ≤ r ≤ 18.
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Table 1. Fraction  of correctable erasures with weight ρ as a function of r for the nonshortened [2r – 1, 2 r – 1 – r, 4] Ham-

ming code (or, equivalently, the fraction  of correctable erasures with weight ρ – 1 as a function of r – 1 for the non-
shortened [2 r – 1 – 1, 2 r – 1 – r, 3] Hamming code) at 4 ≤ ρ ≤ 12, ρ ≤ r, and 7 ≤ r ≤ 20

r ρ = d = 4 ρ = 5 ρ = 6 ρ = 7 ρ = 8 ρ = 9 ρ = 10 ρ = 11 ρ = 12

7 0.9836 0.9180 0.7469 0.4121
8 0.9920 0.9600 0.8741 0.6879 0.3638
9 0.9960 0.9802 0.9373 0.8398 0.6476 0.3342

10 0.9980 0.9902 0.9687 0.9189 0.8152 0.6211 0.3161
11 0.9990 0.9951 0.9844 0.9592 0.9055 0.7985 0.6042 0.3051
12 0.9995 0.9976 0.9922 0.9796 0.9522 0.8962 0.7876 0.5936 0.2984
13 0.9998 0.9988 0.9961 0.9898 0.9760 0.9473 0.8901 0.7807 0.5871
14 0.9999 0.9994 0.9980 0.9949 0.9879 0.9735 0.9441 0.8862 0.7764
15 0.9999 0.9997 0.9990 0.9974 0.9940 0.9867 0.9718 0.9420 0.8837
16 1.0000 0.9998 0.9995 0.9987 0.9970 0.9933 0.9858 0.9707 0.9407
17 1.0000 0.9999 0.9998 0.9994 0.9985 0.9967 0.9929 0.9853 0.9701
18 1.0000 1.0000 0.9999 0.9997 0.9992 0.9983 0.9964 0.9926 0.9850
19 1.0000 1.0000 0.9999 0.9998 0.9996 0.9992 0.9982 0.9963 0.9925
20 1.0000 1.0000 1.0000 0.9999 0.9998 0.9996 0.9991 0.9982 0.9962

ρ,δ iH
r

ρ− , −δ 1 1
H
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with weight ρ, and  is the number of correctable

erasures of weight ρ. In conformity with (1.1), we have

(5.1)

It is known [7, 12] that
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(5.3)
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Statement 2. For the [5 × 2r– 4, 5 × 2r–4 – r, 4]

Panchenko code, the number  of the correctable era-

sure configurations with weight ρ is estimated as
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Proof. In the cases of ρ = 4 and 5, condition (2.4)
is fulfilled. With the use of (5.2) and (5.3), formulas (2.1)
and (2.3) provide (5.4) and (5.5). Relationship (5.6)
is derived using (3.18) with ρ0 = 5 and

Ψ(n, d, ρ0) = .
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Example 2. For the nonshortened [5 × 2r– 4, 5 ×

2r–4 – r, 4] Panchenko code, the dependences between

the fraction  of correctable erasures with weight ρ
and r, which were obtained at ρ = 4, 5, and 6 and 7 ≤
r ≤ 18, are presented in Fig. 2. The exact values of 

and  were determined according to formulas (5.1),

(5.4), and (5.5). The lower estimate of quantity 

follows from (5.1) and (5.6).

The numerical values of  are summarized in

Table 2, where the exact values of  correspond to

ρ = 4 and 5 and the lower estimate is designated by
ρ = 6.

Example 3. In the case of the nonshortened [80, 72, 4]
Panchenko code from (5.1), (5.4), and (5.5), we have

 = 0. 993488 and  = 0.964712. Let the [76, 64, 8]

Panchenko code is shortened by eight symbols accord-
ing to Algorithm 1 from [12]. Then, with allowance for
the algorithm modification in [7], it is valid that A4 =

6654 and A5 = 38586 [7, Table 2]. Hence, using formu-

las (2.1) and (5.1), we arrive at  = 0.993532 > 

and  = 0.964903 > , where  designates the

fraction of erasures of weight ρ correctable by the [5 ×

2r – 4 – v, 5 × 2r – 4 – v – r, 4] Panchenko code, which
is shortened by v symbols. The aforesaid illustrates
Theorem 4.1 and Corollary 4.1.

5.3. [2(r–1)/2 – 1, 2(r–1)/2 – r, 5] 
and [2(r–1)/2, 2(r–1)/2 – r, 6] Nonshortened BCH Codes

Let  designate the binary extended [2(r–1)/2,

2(r‒1)/2 – r, 6] BCH code with even weights. For the
given code, it is possible to introduce the following
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Fig. 2. Variations in the fraction  of correctable erasures

with weight ρ vs. r for the nonshortened [5 × 2r– 4, 5 ×

2r ‒ 4 – r, 4] Panchenko code under the condition that 7 ≤
r ≤ 18 and ρ = 4, 5, and 6. The continuous lines are the

exact values of , and the dashed curve designates the

lower estimate of .
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system of notation:  is the number of words with

weight w,  is the number of the correctable erasure

configurations with weight ρ, and  is the fraction of

correctable erasures of weight ρ. In compliance with
(1.1), we have

(5.7)

It is known [16, p. 434] that

(5.8)

Let B designate the [2(r – 1)/2 – 1, 2(r – 1)/2 – r, 5]
binary BCH code obtained via puncturing of the cer-

tain position of code . Let  be the fraction of

erasures with weight ρ correctable by code B. The code

 is twice transitive (see, e.g., [17]) and, conse-

quently, possesses property P from the definition in
Section 4.2. Hence, for ρ = 6, 7, 8, and 9, Theorem 4.3
provides the equality

(5.9)

where the left- and right-hand sides of the equality

were deduced for codes  and B, respectively.
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Moreover, if condition (2.4) is taken into account,

we have

(5.10)

Using (2.1), (2.3), (2.4), (5.7), (5.8), and (5.10) and

allowing for the evenness of all weights in code , we

obtain

Statement 3. The fraction  =  of erasures

with weights ρ and ρ – 1 correctable by [2(r – 1)/2, 2(r – 1)/2 –

r, 6] and [2(r – 1)/2 – 1, 2(r – 1)/2 – r, 5] BCH codes is
defined as

(5.11)

(5.12)

We note that code  can be interpreted as

extended code B.

Example 4. For the [2(r – 1)/2, 2(r – 1)/2 – r, 6] non-

shortened extended BCH code , the dependences

between the fraction  of correctable erasures with

weight ρ and r (see (2.1), (2.3), (2.4), (5.7), (5.11), and
(5.12)), which were determined at ρ = 6, 7, 8, and 9
and r = 13, 15, and 17, are depicted in Fig. 3. In the
cases of ρ = 6, 7, and 8, condition (2.4) holds. At ρ = 9,
this condition is not fulfilled and the corresponding

ρ, ρ−1 −δ = δ ρ = 6, 7,8.i
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Table 2. Fraction  of correctable erasures with weight ρ as a function of r for the nonshortened [5 × 2r – 4, 5 × 2r – 4 – r, 4]

Panchenko code under the condition that 7 ≤ r ≤ 18 and ρ = 4, 5, and 6

r 7 8 9 10 11 12

n 40 80 160 320 640 1280

ρ = d = 4 0.9870 0.9935 0.9967 0.9984 0.9992 0.9996

ρ = d + 1 = 5 0.9287 0.9647 0.9825 0.9913 0.9956 0.9978

ρ = d + 2 = 6 ≥ 0.5041 0.7589 0.8810 0.9409 0.9705 0.9853

r 13 14 15 16 17 18

n 2560 5120 10240 20480 40960 81920

ρ = d = 4 0.9998 0.9999 0.9999 1.0000 1.0000 1.0000

ρ = d + 1 = 5 0.9989 0.9995 0.9997 0.9999 0.9999 1.0000

ρ = d + 2 = 6 ≥ 0.9927 0.9963 0.9982 0.9991 0.9995 0.9998

Π
ρδ ,r
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graph is the lower estimate of fraction . In calcula-

tions based on ρ = 8 and 9, quantities  were taken

from [19, Appendix A] and [21]. If (5.9) and (5.10) are
taken into account, the aforementioned curves are the

graphs of fraction  of correctable erasures with

weight ρ – 1 as a function of r – 1 for the [2(r–1)/2 – 1,

2(r–1)/2 – r, 5] code B.

The numerical values of  are presented in Table 3,

where the exact values of  correspond to ρ = 6, 7,

and 8 and the lower estimate is designated by ρ = 9.

For r = 19, only the values of  and  were calcu-
lated.

δ i

9,

B

r

i

8,

B

rA

ρ− −δ 1, 1

B

r

ρδ i

,

B

r

ρδ i

,

B

r

δ i

6,19
B δ i

7,19
B

6. ERASURE CORRECTION 
WITH DETECTION OF ERRORS

In this section, the case where ρ erasures and ν
errors take place (d ≤ ρ < r and ν > 0) is considered for
an [n, r, d] code. Let us introduce the following set of
notation:

(i)  is the r × (ρ + ν) submatrix of the check

matrix corresponding to erasures and errors.

(ii) Aρ is the r × ρ submatrix of the check matrix

corresponding only to erasures.

(iii) +(Aρ) is the overdetermined system of r linear

equations with ρ unknowns, the matrix of which is Aρ
and the column of free elements is the column of syn-
drome.

(iv) Δν,ρ is the fraction of errors with multiplicity ν
that are detected upon attempts to correct ρ erasures
corresponding to r × ρ matrix Aρ of rank ρ.

It should be noted that matrix Aρ is known to a

decoder and is the submatrix of matrix . The syn-

drome is the sum of the columns of matrix . In

decoding, system +(Aρ) is solved. The decoding pro-

cess is not fulfilled if the system +(Aρ) cannot be

solved, i.e., in two cases:

(i) The rank of matrix Aρ is less than ρ (system

+(Aρ) is degenerate).

(ii) The rank of matrix Aρ is ρ (or, equivalently, era-

sures correspond to the ρ linearly independent col-

umns of the check matrix), but the system +(Aρ) is

inconsistent.

Case (ii) is interpreted as error detection during an
attempt of correction of ρ erasures corresponding to

( )ν
ρA

( )ν
ρA

( )ν
ρA

Fig. 3. Variations in the fraction  of correctable erasures with weight ρ vs. r for the nonshortened extended [2(r – 1)/2,

2(r ‒ 1)/2 – r, 6] BCH code (or, equivalently, the fraction  of correctable erasures with weight ρ – 1 vs. r – 1 for the non-

shortened [2(r – 1)/2 – 1, 2(r – 1)/2 – r, 5] BCH code) under the condition that ρ = 6, 7, 8, and 9 and r = 13, 15, and 17. The con-

tinuous lines are the exact values of  = , and the dashed curve designates the lower estimate of  = .
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Table 3. Fraction  of correctable erasures with weight

ρ as a function of r for the nonshortened extended [2(r – 1)/2,

2(r – 1)/2 – r, 6] BCH code (or, equivalently, the fraction

 of correctable erasures with weight ρ – 1 as a function

of r – 1 for the nonshortened [2(r – 1)/2 – 1, 2(r – 1)/2 – r, 5]
BCH code) under the condition that ρ = 6, 7, 8, and 9 and
r = 13, 15, 17, and 19

r 13 15 17 19

n 64 128 256 512

ρ = d = 6 0.9997 0.9999 1.0000 1.0000

ρ = d + 1 = 7 0.9981 0.9996 0.9999 1.0000

ρ = d + 2 = 8 0.9922 0.9982 0.9995

ρ = d + 3 = 9 ≥ 0.9752 0.9942 0.9986

ρδ i

,

B

r

ρ− −δ 1, 1

B

r

Саша
Записка
In the right part of the last equality, superscript  should be only B   
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the ρ linearly independent columns of the check
matrix.

Lemma 6.1. If ρ erasures and ν errors occur (d ≤ ρ < r
and ν > 0) and the erasures correspond to ρ linearly
independent columns of the check matrix of an [n, r, d]
code, errors are detected if and only if the rank of the

r × (ρ + ν) matrix  corresponding to the erasures and

errors is greater than or equal to ρ + 1.

Proof. If the rank of matrix  is less than ρ + 1,

this matrix contains column h not belonging to sub-
matrix Aρ and linearly independent of other columns

of the given submatrix. The column h is one of the syn-
drome summands, i.e., the column of free elements of

system +(Aρ). Hence, the rank of the extended matrix

of system +(Aρ) is greater than or equal to ρ + 1 and is

not equal to the rank of the system’s basic matrix, sig-

nifying its inconsistency. If the rank of matrix  is ρ,

such column h does not exist and the system turns out
to be consistent.

Let λ(d, ρ) and (d, ρ) are defined as in Section 3.

Theorem 6.1. If ρ erasures and v errors take place
(d ≤ ρ < r and ν > 0) and the erasures correspond to the
ρ linearly independent columns of the check matrix of an
[n, r, d] code, the fraction Δν,ρ of detectable errors is esti-

mated as follows:

(6.1)

(6.2)

(6.3)

(6.4)
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Proof. By analogy with the proof of Lemma 3.1, it is
possible to demonstrate that, in the case of matrix Aρ with

rank ρ, the remaining part of the check matrix comprises

the set of no less than m = n + 1 – 2ρ + λ (d, ρ + 1) col-
umns whose substitution into Aρ provides the matrix of

rank ρ + 1. Let T designate the given set. To found

matrix , matrix Aρ must be added with some r × ν
matrix D. The matrix  has rank ρ (i.e., errors are

not detected) if and only if the matrix D has no col-
umns from T. The number of such matrices D is

. The total number of matrices D is

. Therefore, there are no less than  –

 matrices  with rank ≥ρ + 1. On the other

hand, the  errors of multiplicity v exists beyond ρ

erasures. Dividing the number of “good” matrices  by

, we obtain (6.1). Relations (6.2)–(6.4) can be

proved similarly with the help of approaches used to
prove Lemmas 3.1 and 3.2.

7. ALGORITHMS FOR EXTENDED 
DECODING OF BINARY PRODUCT CODES

Let us consider decoding proсedure for a product
code with identical [n, n – r, d] component codes on
its rows and columns. The code word is the n × n
matrix. It is assumed that d = 4 or 6.

Let us introduce the following system of notation:
H is the r × n parity check matrix of a binary compo-
nent code, U is the n × n matrix of the received word
with errors, Srow is the n × r matrix of row syndromes,

and Scol is the r × n matrix of column syndromes.

Algorithm 1.
(i) Calculation of the syndromes Srow = UHT and

Scol = HU.

(ii) Formation of the lists Lrow and Lcol of row and

column numbers with detected errors.

(iii) Testing whether submatrices H(Lrow) and

H(Lcol) are nondegenerate. If at least one of them is

nondegenerate, erasures are corrected (with the help
of the minimum-size submatrix at the intersection of
two lists) and the corrected codeword is produced.
Otherwise, the <failure> is formed.

Algorithm 2.
(i) Algorithm 1 is carried out. In the case of <fail-

ure>, step (ii).

(ii) List Lrow with correction of one error (or up to

two for the BCH code) is inspected, and the renewed

( )ν
ρA

( )ν
ρA

n m− ρ −⎛ ⎞
⎜ ⎟ν⎝ ⎠

n − ρ⎛ ⎞
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list Lrow with corrections kept in matrix Ures is com-

plied.

(iii) The syndrome Scol = HUres is calculated, and

renewed list Lcol is prepared.

(iv) For the renewed Lcol, it is revealed whether

submatrix H(Lcol) is nondegenerate. If the submatrix is

nondegenerate, the erasures are corrected at the inter-
section of renewed lists and the corrected codeword is
generated. Otherwise, <failure> or step (v).

(v) List Lcol with correction of one error (or up to

two for the BCH code) is examined, and the renewed
list Lcol with corrections preserved in matrix Ures is

complied.

(vi) The syndrome Srow = HUres is calculated, and

the renewed list Lrow is prepared.

(vii) For the renewed Lrow, it is revealed whether sub-

matrix H(Lrow) is nondegenerate. If the submatrix is

nondegenerate, the erasures are corrected at the inter-
section of renewed lists and the corrected codeword is
produced. Otherwise, <failure> (or step (iii) until a
double failure is fulfilled in steps (iv) and (vii)).

Comment. In the proposed algorithms, rows and
column are independently decoded up to the final step
(i.e., step (iii) in Algorithm 1 and steps (iv) and
(vii) in Algorithm 2). Owing to such a construction of
the algorithms, preliminary decoding is performed
independently and parallel over rows and columns
and, consequently, the delay and complexity of decod-
ing is decreased. However, in this case, the set of
decodable error configuration and the correct decod-
ing probability diminish to some extent as compared to
the best attainable result. It is significant that the dim-
inution accumulates only improbable events and the
main term is preserved.

8. ESTIMATING THE PROBABILITY 
OF SUCCESSFUL DECODING

The probability of successful decoding is proposed
to estimate for somewhat simplified general scheme.
The simplification of the decoding algorithm and cal-
culation scheme consists in that the preliminary
decoding of rows and columns is interpreted as inde-
pendent events. Since rows and columns are inde-
pendently decoded, the complexity and delay of
decoding of a product code can be reduced, while
independent calculations provide the estimated main
term of the probability of successful decoding.

Let Ω designate the probability of the event,
namely, successful decoding of rows and, inde-
pendently, successful decoding of columns for the
symmetric structure of a product code. Therefore, the
probability of successful decoding of the product code

can be estimated (from below) as 1 – (1 – Ω)2 because
the fault probability during column decoding per-
formed after the failure arising from row decoding can
differ from 1 – Ω.

Let p designate the bit-error probability at the
decoder input. Evidently, we have

(i) The probability that a row (column) has no
errors is

(ii) The probability that a row (column) has at least
one error is

(iii) The probability that a row (column) has more
than one error is

(iv) The probability that a row (column) has more
than two errors is

Let us introduce the following system of notation:

d+ is the threshold for the extended correction of era-

sures, d+ ≥ d, and δρ is fraction of erasures with weight

ρ correctable by a component code.

8.1. Product of Codes with Distance 4

The probability that just ρ rows (columns) contain
more than one error is defined by

The probability of successful decoding of rows (col-
umns) is expressed as

(8.1)

For product of codes with distance 4, the probabil-
ity of failure is defined by

(8.2)

The probability of successful decoding for product of
codes with distance 4 is expressed as

Example 5. For the product of shortened [72, 64, 4]
and [137, 128, 4] Panchenko codes, the fault probabil-

ities (1 – Ω2)
2 are presented in Tables 4 and 5, respec-

tively. In this case, the input probabilities are p = 10–1,

10–2, 5 × 10–3, 10–3, 5 × 10–4, and 10–4, quantities d+ =

3, 4, 5, and 6, and entry e-m designates 10–m.

In [7, Table 2], we constructed the Panchenko
code with the weights A4 = 6654, A5 = 38586, and A6 =

695799. Using the given weights and formulas (2.1)–
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(2.4), we obtain the exact values of δ4 and δ5 and the

lower estimate of δ6. Afterward, Table 4 is filled in

according to (8.1) and (8.2).

In [12, p. 899], the authors created the [137, 128, 4]
Panchenko code with the weight A4 = 45443. Using

(2.1) and (2.3), we get Ψ (137, 4, 4) and the exact value of
δ4. Next, with the help of (3.18) and (1.1), we find the

lower estimates of δ5 and δ6. The probability (1 – Ω2)
2

from table 5 is calculated in compliance with (8.1)
and (8.2).

8.2. Product of Codes with Distance 6

The probability that just ρ rows (columns) contain
more than two error is defined by

The probability of successful decoding of rows or col-
umns is expressed as

(8.3)

( ) ( )ρ −ρ⎛ ⎞ −⎜ ⎟ρ⎝ ⎠
3 31 .

nn
P P

( ) ( )
+

ρ −ρ
ρ

ρ=0

⎛ ⎞Ω = − δ⎜ ⎟ρ⎝ ⎠
∑3 3 31 .

d

nn
P P

For product of codes with distance 6, the probability
of failure is defined by

(8.4)

The probability of successful decoding of product of
codes with distance 6 is expressed as

Example 6. For the product of extended even-
weight [79, 64, 6] and [145 128, 6] BCH codes, the

fault probabilities (1 – Ω3)
2 are presented in Tables 6

and 7, respectively. In this case, the input probabilities

are p = 10–1, 10–2, 5 × 10–3, 10–3, 5 × 10–4, and 10–4

and thresholds are d+ = 5, 6, 7, 8, and 9.

In [7, Table 5], the [79, 64, 6] BCH code with A6 =

17375 was constructed. From formulas (2.1), (2.3) and
(2.4), we obtain the exact values of δ6 and δ7. Next, on

the basis of formula (3.19), we find the lower estimates
of δ8 and δ9. Afterward, Table 6 is filled in according to

(8.3) and (8.4).

Using [7, Theorem 3.1] and relationship (5.8), it is
possible to demonstrate that the even-weight [145, 128,
6] BCH code with A6 = 181611 exists. Once again, the

exact values of δ6 and δ7 are determined according to

( )− Ω 2

31 .

( )= − − Ω 2

,6 31 1 .prodP

Table 4. Fault probabilities of the product of [72, 64, 4] Panchenko codes

p 10−1 10−2 5 × 10−3 10−3 5 × 10−4 10−4

d+ = 3 1 0.996 0.250 1.1e-09 2.3e-14 1.9e-25

d+ = 4 1 0.988 0.092 1.6e-12 5.1e-18 1.1e-31

d+ = 5 1 0.967 0.027 7.0e-14 1.045e-18 4.931e-32

d+ = 6 1 0.926 0.008 5.8e-14 1.029e-18 4.931e-32

Table 5. Fault probabilities of the product of [137, 128, 4] Panchenko codes

p 10−1 10−2 5 × 10−3 10−3 5 × 10−4 10−4

d+ = 3 1 1 0.9999989 9,2e-4 7,4e-8 1,021e-18

d+ = 4 1 1 0.9999933 4,5e-5 2,8e-10 3,304e-23

d+ = 5 1 1 0.9999681 2,3e-6 5,0e-12 1,138e-23

d+ = 6 1 1 0.9998819 4,2e-7 2,5e-12 1,135e-23

Table 6. Fault probabilities of the product of [79, 64, 6] BCH codes

p 10−1 10−2 5 × 10−3 10−3 5 × 10−4 10−4

d+ = 5 1 0.02149 8.9e-10 0 0 0

d+ = 6 1 0.00435 5.4e-12 0 0 0

d+ = 7 1 0.00069 2.5e-14 0 0 0

d+ = 8 1 0.00021 3.2e-15 0 0 0

d+ = 9 1 0.00019 3.1e-15 0 0 0
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formulas (2.1), (2.3) and (2.4), and the lower estimates
of δ8 and δ9 are found from formula (3.19). The prob-

ability (1 – Ω3)
2 from Table 7 is calculated in compli-

ance with (8.3) and (8.4).

Tables 4–7 illustrate the expected fact that the

probability of failure diminishes with increasing d+.

CONCLUSIONS

In this work, different methods for estimating the
number and fractions of erasures with arbitrary
weights correctable by binary linear codes with the
known weight spectrum of code words (or with par-
tially known or completely unknown weight spectra)
are constructed. The examples of calculations are
given for Hamming and Panchenko codes with dis-
tances 3 and 4 and Bose–Chaudhuri–Hocquenghem
codes with distance 6, including their shortenings.
Such examples were chosen according to the antici-
pated field of application: solid-state memory devices
and their modifications. It is pertinent to note that, in
conformity with calculations, the product of
Panchenko codes with distance 4 or BCH codes with
distance 6 and identical code sizes of 64 or 128 bit
ensure a high reliability: when the error probability in
the memory cell is on the order of 0.0001, the fault
probability of the [72, 64, 4] Panchenko codes reduces
by seven orders of magnitude if the decoding region is
extended from three to five erasures. In the case of the
product of BCH code of the same size, the analogous
effect is observed at an input probability of 0.001. The
presented examples indicate that practically maxi-
mum effect is attained at a sufficiently small extension
of the decoding region (from d – 1 to 3/2d). In
essence, this result signifies that, beyond the afore-
mentioned interval, the selection of the practical
restriction of the decoding region is determined only
by the complexity of erasure corrections.

In the theoretical part of the given work, it is nec-
essary to highlight the different methods of obtain-
ment of estimates: spectral, combinational, and recur-
rent. It is demonstrated that these methods can be
combined depending on the volume of known data on
the specified class of codes. As a special case, estimates
are deduced for shortened and extended codes. An
important result is the derived estimates of the condi-
tional probability of error detection during erasure

correction in the extended decoding region. From this
estimate (Theorem 6.1), it follows that practically all
errors are detected in the extended decoding region
under consideration.
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